پست‌ها

اندازه گیری پارامترهای مربوط به ظرفیت نفوذ در بتن و راهکارها

تصویر
  مفهوم کلی ظرفیت نفوذ و اهمیت آن از نظر دوام بتن، قبلا معرفی شده است. در این بخش، برخی از چندین روش اندازه گیری مورد استفاده به منظور تعیین کمی جنبه های مختلف ظرفیت نفوذ در بتن ها، به طور مختصر مورد بررسی قرار می گیرد. این روش های مختلف، توانایی یک بتن مشخص در انتقال آب مایع، بخار آب، جریان الکتریکی با یون ها را در درجه نخست از طریق حفرات موجود در چسباننده بتن، مشخص می سازند. روشن است که این توانایی به اندازه حفرات و نیز به درجه ارتباط موثر حفرات بزرگتر، بستگی دارد. درجه بالایی از ارتباط میان حفرات بزرگتر اغلب با عنوان «تراوایی» در مراجع عنوان می شود، و از بین رفتن تدریجی آن بر اثر پیشرفت هیدراسیون منجر به ایجاد «ناتراوایی» می گردد. اغلب اینگونه بیان می شود که در ناتراوایی، حفرات بزرگ تر به طور موثری مجزا می شوند به گونه ای که تنها ارتباط باقیمانده میان آنها از طریق «حفرات ژلی» می باشد. نویسنده حاضر با توجه به بحث قبلی خود در ارتباط با مفهوم حفرات ژلی، این ایده را بسیار غیر متحمل می داند. ایده باریک شدن پیش رونده «درزهای محدود شده» چنانکه در شکل 2-8 نشان داده شده است، بسیار منطقی تر ب

بررسی استفاده از ترکیب بتن در تاریخ جهان

تصویر
  هدف از این پژوهش در وب سایت کلینیک بتن ایران، گردآوری مجموعه ای از اطلاعات و بررسی ها در ارتباط با عناوین جاری مربوط به  دوام بتن و ترکیبات سیمانی  می باشد. ممکن است این پرسش منطقی مطرح گردد که امروزه که بتن و مصالح مرتبط با آن با موفقیت چشمگیری در پروژه های ساخت و ساز مهم مورد استفاده قرار گرفته است. در حقیقت، چندین سازه باستانی بتنی مانند پانتئون در روم، و سازه های بنایی با درزهای ملاتی مانند پل دره ای پونت دوگارد در نزدیکی نیم در جنوب فرانسه (شکل 1-1)، با کیفیت بسیار خوب تا به امروز باقی مانده اند. این مثال ها و نمونه های دیگری از کار ساخت و ساز رومی ها حاوی سیمان های هیدرولیکی ساخته شده از آهک و خاک آتشفشانی (یا آلومینوسیلیکات های شیشه ای مشابه که در مجموع تحت عنوان پوزولان ها نامیده می شوند، زیرا پوزولی در نزدیکی ناپلز، منبع طبیعی این مصالح بوده است)، حتی در موارد قرارگیری در معرض محیط های خورنده مرطوب، دوام قابل توجهی را از خود نشان داده اند. یک تصویر فوق العاده تهیه شده توسط دیوی که نشان دهنده بخشی از یک موج شکن رومی می باشد که در نزدیکی ناپلز به مدت دو هزاره (شکل 1-2) در معرض

تاثیر قرار گیری حفره ها در بتن

تصویر
  در خمیرهای سیمانی آزمایشگاهی آب بند (با در بتن های حفاظت شده در برابر اثرات شسته شدن یا خشک شدن)، خروج سولفات از محلول حفره ای باز هم نشانگر حداکثر میزان غلظت هیدروکسید قلیایی نمی باشد. در عوض، با ادامه یافتن هیدراسیون، مقدار محدودی از آب حلال به تدریج تقلیل یافته و غلظت هیدروکسید قلیایی از حجم باقیمانده  محلول حفره ای ، افزایش می یابد. غلظت نهایی یون های هیدروکسید موجود در محلول حفره ای در ملات ها و خمیرهای آب بند با یک نسبت w:c مشخص، دارای رابطه تنگاتنگی با محتوای قلیایی سیمان مورد استفاده می باشد. چند سال پیش، کلینیک بتن ایران مجموعه ای از تحلیل ها را از منابع مختلف برای محلول های به دست آمده از ملات ها و خمیرهای با نسبت w:c برابر 50/0 جمع آوری نموده و به چاپ رساند. کلیه این مواد در دمای اتاق برای دوره معمول 28 روز، هیدراته شدند و ترکیبات شیمیایی کلیه سیمان ها مورد استفاده در چاپ های اصلی گزارش گردید. نمودار غلظت یون OH- گزارش شده در برابر مقدار مواد قلیایی سیمان مورد استفاده، رسم گردیده و یک رابطه خطی بسیار خوب خصوصا با در نظر گرفتن اختلاف منابع داده ای، به دست آمد. مشخص شد که غل

تغییرات میان بتن ها و بتن شبه اصلی

تصویر
  بتن های پیشرفته از نظر مشخصات مربوط به جنبه های مورد نظر در این مقاله وب سایت کلینیک بتن ایران، بسیار متنوع می باشند. در آغاز می توان گفت که بتن های طراحی شده برای کاربردهای مختلف، در حال حاضر با نسبت های w:c بسیار مختلفی تولید می شوند. نویسنده دارای تجربه شخصی بسیاری در بررسی و آزمودن بتن هایی می باشد که با نسبت های w:c برابر 8/0، 9/0 یا حتی بالاتر ریخته شده اند. از سوی دیگر، بتن های با عملکرد بالای جدید با نسبت های موثر آب به مواد سیمانی پایین تا حد 25/0 با موفقیت تولید می شوند.  تغییرات خواص داخلی بتن  از این تغییرات گسترده در نسبت w:c ناشی می شود. ساختار شیمیایی سیمان پرتلند مورد استفاده در بتن، یک عامل وابسته دیگر می باشد؛ زیرا سیمان ها از نظر مشخصات شیمیایی دارای تغییرات قابل ملاحظه ای می باشند که این امر بر ساختار شیمیایی محلول حفره ای در حال ایجاد و تا حد کمتر بر ساختار خمیر تاثیرگذار می باشد. مقدار مشخصی از ترکیبات فرعی قلیایی (اغلب سولفات های پتاسیم یا سولفات های کلسیم پتاسیم) در یک سیمان مشخص، بر ساختار شیمیایی محلول حفره ای بتن به شدت اثر می گذارد. یک ویزگی عجیب ساختار شی

توزیع مکانی حفرات در بتن ها

تصویر
  به نظر می رسد به طور کلی از آن چشم پوشی شده، اگر چه قبلا از آن نام برده شده است. برخی از خمیرهای سیمان در بسیاری از بتن های شبه اصلی، شامل وصله ها یا نواحی موضعی مشخصی می باشند که دارای تخلخل زیاد قابل مشاهده بوده و شامل دانه های درشت سیمان، در صورت وجود می باشند؛ این نواحی امیخته با نواحی دیگری هستند که به طور موضعی مملو از  دانه های درشت سیمان  بوده و تنها فضای حفره ای محدودی را از خود نشان می دهند. نمونه ای که در شکل 2-10 نشان داده شده، از یک بتن 28 روزه که با نسبت w:c برابر 45/0 در آزمایشگاه مخلوط شده، تهیه شده است. این نواحی (یا «وصله ها») با تخلخل موضعی به شدت متفاوت، توسط رایتر در ملات های آزمایشگاهی شناسایی شدند که برای الگوبرداری از ملات های مطالعه شده توسط وینسلو و همکاران، تهیه شده بودند، اما توسط آنها به صورت میکروسکوپی مورد بررسی قرار نگرفته بودند. نتایج MIP از این ملات ها که قبلا تفسیر شده بود، نفوذ و رد شدن از ITZها را برای ملات ها حاوی مقدار بالای ماسه، نشان داده بود. شکل 2-10- نمونه ای از بخش های متخلخل و متراکم در یک بتن 28 روزه و با نسبت آب به سیمان 45/0 اندازه وصل

چگونگی شکل گیری و ساختار شیمیایی محلول های حفره ای در بتن

تصویر
  ساختار شیمیایی محلول حفره ای موجود در حفرات یک بتن، ممکن است دوام بالقوه آن را به شدت تحت تاثیر قرار دهد. پتانسیل ایجاد واکنش قلیایی سیلیسی ASR، خوردگی فولاد، حمله سولفات، «حمله آب دریایی» و تورق بتن همگی مستقیما تاثیر ساختار شیمیایی محلول حفره ای و تغییراتی که ممکن است در آن اتفاق بیفتد را منعکس می نمایند. متاسفانه،  محلول های حفره ای بتن  و تغییرات احتمالی آنها در شرایط محیطی مختلف موجود در محل، به خوبی توسط افرادی که به بحث دوام بتن اشتغال دارند شناخته نشده است. در این بخش، امید آنمی رود که راهکاری واقع بینانه در ارتباط با منشا پیدایش و گسترش محلول های حفره ای در بتن ها و برخی تغییراتی که ممکن است بر اثر قرار گیری در معرض محیط های خارجی متفاوت ایجاد گردند، ارائه می شود. منشا پیدایش و گسترش اولیه ی محلول های حفره ای هنگامی که بتن مخلوط می شود، واکنش های شیمیایی بلافاصله پس از اضافه نمودن آب به مخلوط، آغاز می شوند. آب مورد استفاده معمولا آب «آشامیدنی» می باشد. این واکنش ها به سرعت منجر به تغییر شدید ساختار شیمیایی آب می گردد. تنها در مدت چند دقیقه، این آب آشامیدنی تبدیل به یک محلول